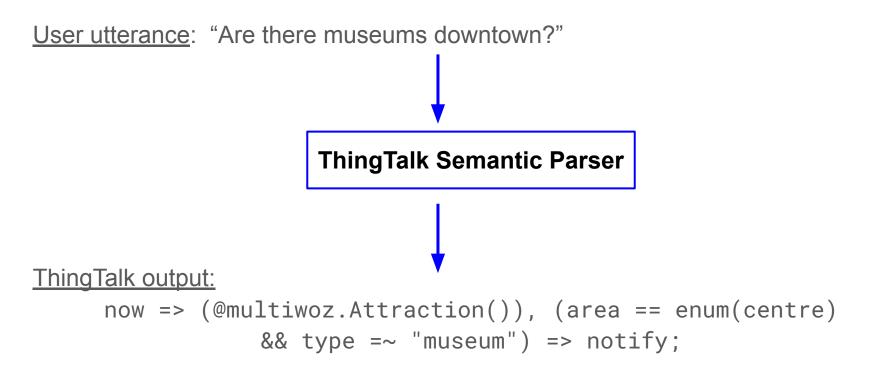
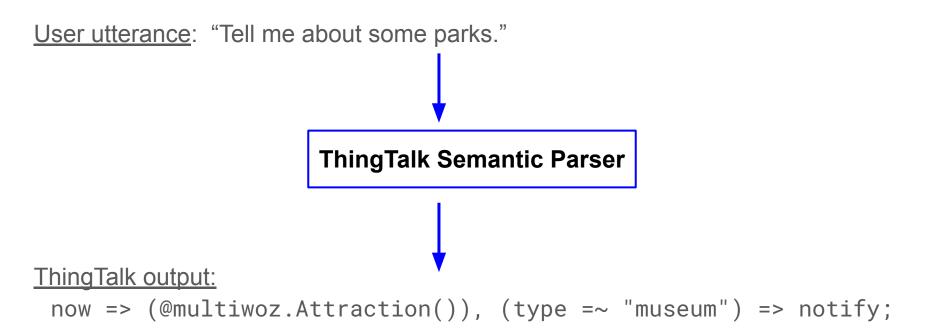
Better Error Detection with Calibrated Neural Confidence Modeling

Ammar and Trey (plus our awesome mentor Sina)

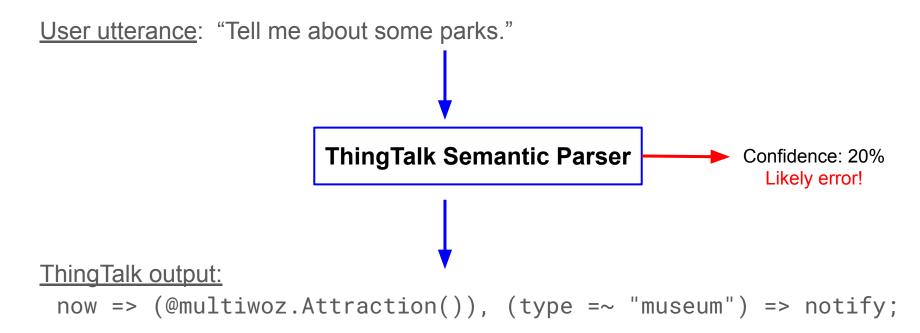
Motivation

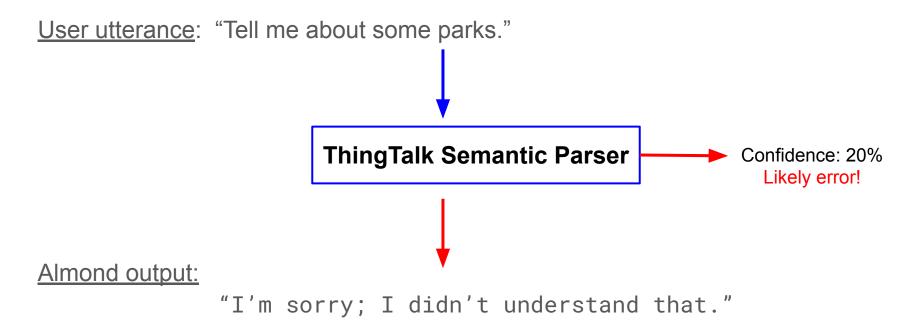


Motivation

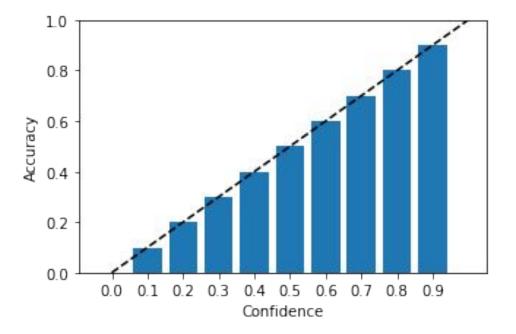


Motivation





Calibration = Confidence vs Accuracy

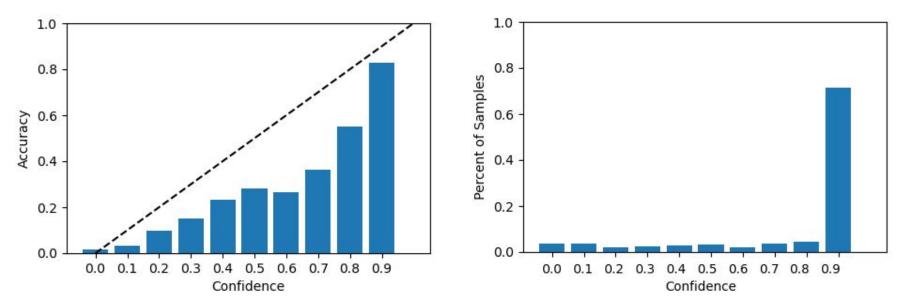


Baseline

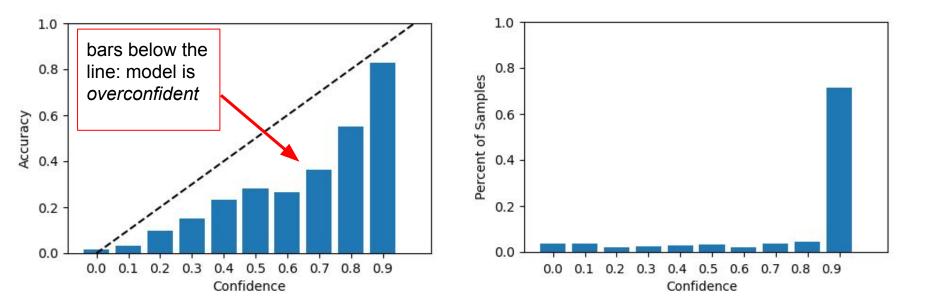
Baseline method: Simply use the semantic parser's softmax output probability as the confidence

Baseline: not well calibrated!

Baseline method: Simply use the semantic parser's softmax output probability as the confidence

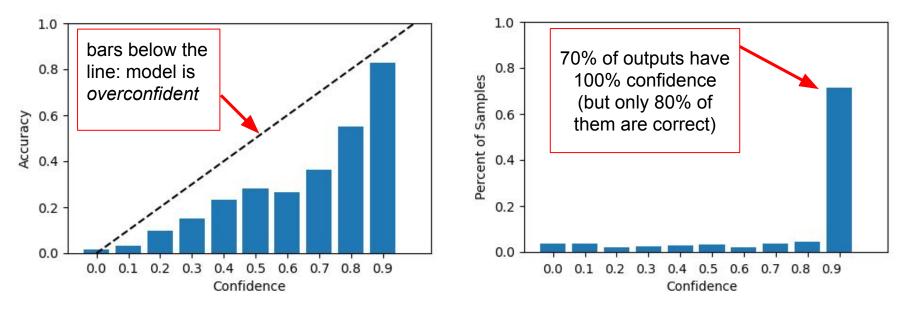


Baseline: not well calibrated!



Expected Calibration Error (ECE): 0.19

Baseline: not well calibrated!



Expected Calibration Error (ECE): 0.19

How to Calibrate a Model?

ThingTalk Semantic Parser

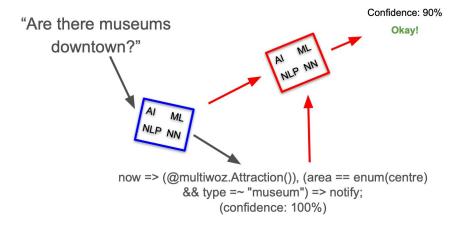
Input: user utterance

Output: ThingTalk code

Calibrator Model (Random Forest)

Input: original model state evaluated on an input

Output: confidence score (probability that the model's output is correct)



Calibrator methodology: Training

Dataset: Annotated MultiWOZ

Training Data (80% of original training set)		Calibration Data (20%)	Evaluation Data (not to scale)
Semantic Parser			

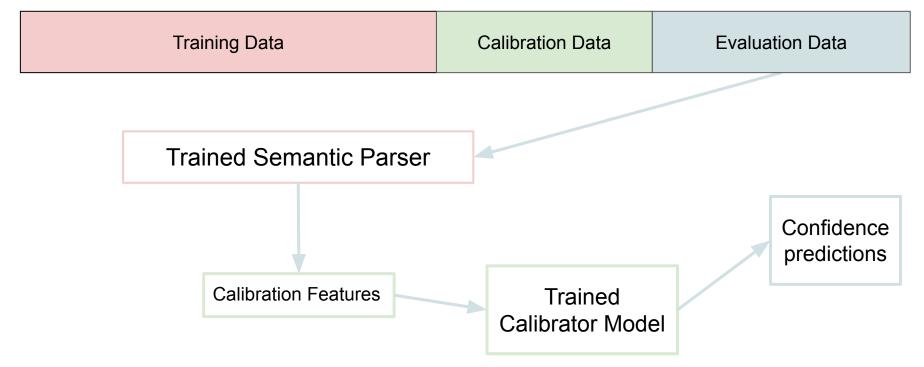
Calibrator methodology: Calibration

Dataset: Annotated MultiWOZ

Training Data	Calibration Data	Evaluation Data				
Trained Semantic Parser						
Calibration Features (Top K beam search softmax outputs, MC Dropout variance)	Calibrator Mode (Gradient-boosted random forest)					

Calibrator methodology: Evaluation

Dataset: Annotated MultiWOZ



Results

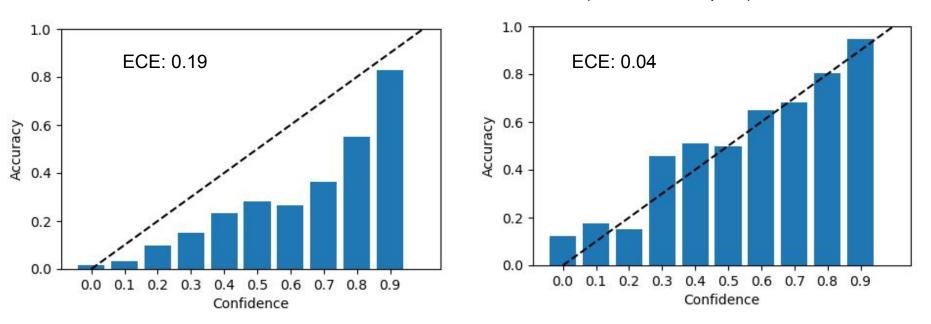
Experiments

Calibrator features	ECE	Best F1	Coverage @ best F1
Baseline	0.19	0.87	77%
1 beam	0.04	0.86	71%
2 beams	0.04	0.85	85%
1 beam + MC Dropout	0.04	0.86	76%
2 beams + MC Dropout	0.03	0.86	82%
4 beams + MC Dropout	0.06	0.85	78%

Summary: better calibration

Baseline

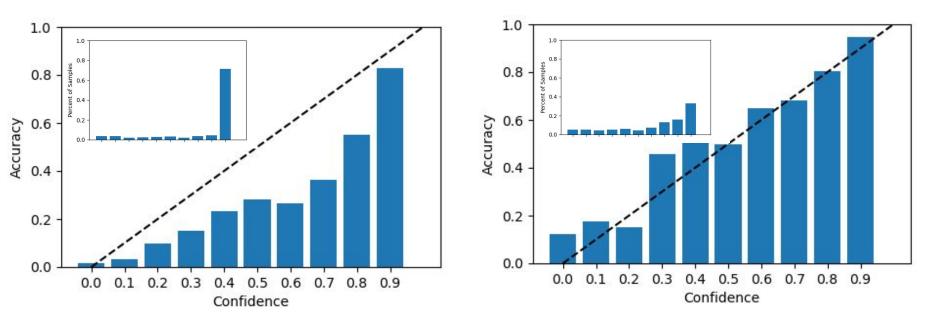
Top Calibrator Model (2 beams + dropout)



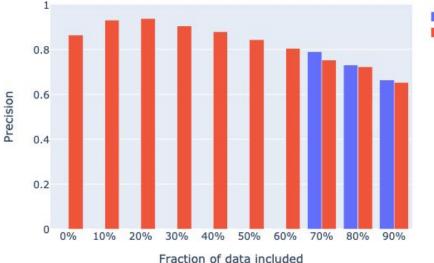
Summary: better dispersion

Baseline

Top Calibrator Model (2 beams + dropout)



Summary: better performance



Baseline calibration Best calibration

> The top calibrator model (2 beams + dropout) gets the **same best F1 score** (0.87) with **better coverage** (82% of inputs vs. 77%)

Further work

- Train calibrator on more data
 - o can calibrator precision improve at high confidence thresholds with more data?
- Dropout in all layers
 - reproduce the results using same theoretical guarantees
- Error analysis
 - better calibration allows us to perform more nuanced error analysis: which high-confidence outputs are incorrect? what kinds of inputs lead to low-confidence outputs?
- Uncertainty interpretation: reproduce further results from Dong et. al of retrieving token-level uncertainty through dropout backpropagation

References

Rodriguez, P., Feng, S., Iyyer, M., He, H., & Boyd-Graber, J. 2019. Quizbowl: The case for incremental question answering. *arXiv* preprint arXiv:1904.04792.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. 2017. On calibration of modern neural networks. arXiv preprint arXiv:1706.04599

Yarin Gal and Zoubin Ghahramani. 2015. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. *arXiv:1506.02142*

Kamath, A.; Jia, R.; and Liang, P. 2020. Question Answering under Domain Shift. arXiv preprint arXiv:2006.09462.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Confidence modeling for neural semantic parsing. arXiv:1805.04604

Kendall, Alex and Gal, Yarin. 2017. What uncertainties do we need in bayesian deep learning for computer vision? *arXiv preprint arXiv:1703.04977*.