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Motivation
User utterance:  “Are there museums downtown?”

ThingTalk output:
now => (@multiwoz.Attraction()), (area == enum(centre) 

&& type =~ "museum") => notify;

ThingTalk Semantic Parser
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Motivation
User utterance:  “Tell me about some parks.”

Almond output:
“I’m sorry; I didn’t understand that.”

ThingTalk Semantic Parser Confidence: 20%
Likely error!



Calibration = Confidence vs Accuracy



Baseline
Baseline method: Simply use the semantic parser’s softmax 
output probability as the confidence
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Baseline: not well calibrated!

bars below the 
line: model is 
overconfident

70% of outputs have 
100% confidence 
(but only 80% of 
them are correct)

Expected Calibration Error (ECE): 0.19



ThingTalk Semantic Parser

Input: user utterance

Output: ThingTalk code

How to Calibrate a Model?
Calibrator Model (Random Forest)

Input: original model state evaluated on 
an input

Output: confidence score (probability 
that the model’s output is correct)



Calibrator methodology: Training

Training Data (80% of original training set) Evaluation Data (not to scale)Calibration Data (20%)

Dataset: Annotated MultiWOZ

Semantic Parser



Calibrator methodology: Calibration

Training Data Evaluation DataCalibration Data

Dataset: Annotated MultiWOZ

Trained Semantic Parser

Calibration Features
(Top K beam search softmax outputs,

MC Dropout variance)

Calibrator Model
(Gradient-boosted 

random forest)



Calibrator methodology: Evaluation

Training Data Evaluation DataCalibration Data

Dataset: Annotated MultiWOZ

Trained Semantic Parser

Calibration Features Trained 
Calibrator Model

Confidence 
predictions



Results



Experiments
Calibrator features ECE Best F1 Coverage @ best F1

Baseline 0.19 0.87 77%

1 beam 0.04 0.86 71%

2 beams 0.04 0.85 85%

1 beam + MC Dropout 0.04 0.86 76%

2 beams + MC Dropout 0.03 0.86 82%

4 beams + MC Dropout 0.06 0.85 78%



Summary: better calibration

Baseline
Top Calibrator Model 
(2 beams + dropout)

ECE: 0.19
AdaECE:
0.19

ECE: 0.04
AdaECE:
0.03



Summary: better dispersion
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Summary: better performance

The top calibrator model 
(2 beams + dropout) gets the 
same best F1 score (0.87) 

with better coverage 
(82% of inputs vs. 77%)



Further work
● Train calibrator on more data

○ can calibrator precision improve at high confidence thresholds with more data?

● Dropout in all layers
○ reproduce the results using same theoretical guarantees

● Error analysis
○ better calibration allows us to perform more nuanced error analysis: which high-confidence 

outputs are incorrect? what kinds of inputs lead to low-confidence outputs?

● Uncertainty interpretation: reproduce further results from Dong et. al of 
retrieving token-level uncertainty through dropout backpropagation
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